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Abstract This paper briefly presents the West African

Monsoon (WAM) Modeling and Evaluation Project

(WAMME) and evaluates WAMME general circulation

models’ (GCM) performances in simulating variability

of WAM precipitation, surface temperature, and major

circulation features at seasonal and intraseasonal scales in

the first WAMME experiment. The analyses indicate that

models with specified sea surface temperature generally

have reasonable simulations of the pattern of spatial dis-

tribution of WAM seasonal mean precipitation and surface

temperature as well as the averaged zonal wind in latitude-

height cross-section and low level circulation. But there are

large differences among models in simulating spatial cor-

relation, intensity, and variance of precipitation compared

with observations. Furthermore, the majority of models fail
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to produce proper intensities of the African Easterly Jet

(AEJ) and the tropical easterly jet. AMMA Land Surface

Model Intercomparison Project (ALMIP) data are used to

analyze the association between simulated surface pro-

cesses and the WAM and to investigate the WAM mecha-

nism. It has been identified that the spatial distributions of

surface sensible heat flux, surface temperature, and mois-

ture convergence are closely associated with the simulated

spatial distribution of precipitation; while surface latent

heat flux is closely associated with the AEJ and contributes

to divergence in AEJ simulation. Common empirical

orthogonal functions (CEOF) analysis is applied to char-

acterize the WAM precipitation evolution and has identi-

fied a major WAM precipitation mode and two temperature

modes (Sahara mode and Sahel mode). Results indicate

that the WAMME models produce reasonable temporal

evolutions of major CEOF modes but have deficiencies/

uncertainties in producing variances explained by major

modes. Furthermore, the CEOF analysis shows that WAM

precipitation evolution is closely related to the enhanced

Sahara mode and the weakened Sahel mode, supporting the

evidence revealed in the analysis using ALMIP data. An

analysis of variability of CEOF modes suggests that the

Sahara mode leads the WAM evolution, and divergence in

simulating this mode contributes to discrepancies in the

precipitation simulation.

1 Introduction

West Africa is one of the areas in the world that has had

significant climate anomalies in the past century. The

dramatic change from wet conditions in the 1950s to much

drier conditions in the 1970s and 1980s over West Africa

represents one of the strongest interdecadal signals on the

planet in the twentieth century (Redelsperger et al. 2006).

The drought in this area since the late 1970s is the most

severe and longest at continental scale in the world during

that century (IPCC 2007). The West African climate is

dominated by the West African monsoon (WAM) system

with a mean annual rainfall of between 150 and 2,500 mm

per year. Monsoon circulations are forced and maintained

by land–sea thermal contrasts and by latent heat released

into the atmosphere. Following the seasonal northward

migration of the Inter-tropical Convergence Zone (ITCZ),

the monsoon develops during the northern spring and

summer, with a rapid northward WAM jump from 5�N in

May–June to 10�N in July–August (Sultan and Janicot

2000). The WAM brings the associated rainfall maxima to

their northernmost locations in August and then withdraws

to the south in September and October. This is the West

African monsoon rainy season. The seasonal characteris-

tics of monsoon rainfall (i.e., onset, jump, length, and

termination of the rainy season), seasonal rainfall amount,

and intraseasonal rainfall distribution during the rainy

season show high interannual variability (e.g., Fontaine and

Janicot 1996; Le Barbé et al. 2002). A comprehensive

investigation of these WAM features is of prime impor-

tance for understanding and predicting the seasonal,

interannual, and interdecadal variability, anomalies, and

drought in West Africa. Such understanding and predictive

ability are crucial for the development of the fragile West

African economy (Redelsperger et al. 2006).

Although numerous diagnostic studies have been con-

ducted to investigate the WAM, there are relatively few

general circulation model (GCM) studies to explore the

WAM seasonal predictability and mechanisms associated

with WAM variability (e.g., Rowell et al. 1995; Douville

et al. 2001; Xue et al. 2004). Some key research issues

remain with regard to our understanding of WAM vari-

ability and important associated features, such as the

African Easterly Jet (AEJ) and the impacts of aerosol,

oceanic, and land processes. No GCMs with either pre-

scribed sea surface temperature (SST) forcing, land forc-

ing, or aerosol forcing were able to produce even half the

magnitude of the West African droughts (e.g., Xue 1997;

Hoerling et al. 2006; Yoshioka et al. 2007).

Part of the difficulty is due to the inability of climate

models to simulate the fundamental features of the WAM

and feedbacks among the different main processes, which

operate at multiple temporal and spatial scales. More

research is required to systematically evaluate climate

models and to exploit fully the observational data, in order

to improve the WAM prediction. Thus, far, there have been

very few studies evaluating GCMs’ performance in simu-

lating the WAM in multi-model experiments (Lau et al.

2006; Cook and Vizy 2006; Hoerling et al. 2006; Biasutti

et al. 2009). The West African Monsoon Modeling and

Evaluation project (WAMME), a Global Energy and Water

Cycle Experiment (GEWEX)/Coordinated Energy and

Water Cycle Observation Project (GEWEX/CEOP) initia-

tive in collaboration with the African Monsoon Multi-dis-

ciplinary Analysis project (AMMA, Redelsperger et al.

2006), uses GCMs and regional climate models (RCMs) to

evaluate the performance of current state-of-the-art climate

models in simulating the WAM precipitation, onset, with-

drawal, and relevant processes at diurnal, intraseasonal,

interannual, and interdecadal scales, and to address issues

regarding the role of land–ocean–atmosphere interaction,

land-cover and land-use change, vegetation dynamics, and

aerosols, particularly dust, on WAM development It also

identifies common deficiencies among models in simulat-

ing the major WAM features and provides better under-

standing of the fundamental physical processes involved.

In particular, it intends to demonstrate the utility and

synergy of CEOP and AMMA field campaign data sets in
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providing a pathway for the evaluation and improvement of

climate models.

This paper presents the preliminary GCM results from

the WAMME’s first intercomparison experiment and

serves as an introductory paper for other WAMME papers

of this special issue, which include the assessment of the

participating RCMs (Druyan et al. 2009), evaluation of

fluxes from the land surface exchange models (Boone et al.

2009b), and in-depth studies based on individual climate

models (Kim et al. 2009; Moufouma-Okia and Rowell

2009; Patricola and Cook 2009). Section 2 introduces the

GCMs, data for evaluation, and the design of the WAMME

first experiment. Section 3 evaluates the WAMME GCM-

simulated precipitation, surface temperature, and some

major circulation features. Section 4 applies AMMA data

to diagnose the divergence of the GCM simulations in

relation to surface variables. Section 5 employs CEOFs to

investigate the characteristics of WAM precipitation and

surface temperature to evaluate models’ performance in

these aspects, to explore the character of model simulation

discrepancies in WAM simulation, and to analyze the

WAM mechanism. Section 6 summarizes results.

2 WAMME GCMs, experimental design,

and evaluation data

WAMME consists of 11 GCMs (Table 1) and 7 RCMs

with a wide range of spatial resolutions and physical

parameterizations. Among the GCMs, the JMA MRI

(Japan Meteorological Administration Meteorological

Research Institute, Mizuta et al. 2006) GCM has very high

horizontal resolution, about 20 km; the Cornell/NCAR

CAM/CLM3.0 (National Center for Atmospheric Research

Table 1 List of WAMME GCMs

Model Resolution Rad. scheme Conv. scheme Surface Aerosol/dust

COLA AGCM (Kinter

III et al. 1997)

T62L28 (*2�, 28

vertical levels)

Briegleb (1992),

Collins et al.

(2002)

Moorthi and Suarez

(1992), Bacmeister

et al. (2000)

SSiB/COLA (Xue

et al. 1991; Dirmeyer

and Zeng 1999)

None

Cornell/NCAR CAM/

CLM3.0 (Collins

et al. 2006)

T42L26 (*3�, 26

vertical levels)

Briegleb (1992),

Collins et al.

(2002)

Zhang and McFarlane

(1995)

CLM (Dickinson et al.

2006)

Sulphur cycle, dust,

mineral and

carbonaceous

aerosols

MRI/JMA Japan

AGCM (Mizuta

et al. 2006)

TL959L60 (*20 km,

28 vertical levels)

Shibata and

Uchiyana (1992),

Shibata and Aoki

(1989)

Prognostic Arakawa-

Schubert

SiB with four soil

layers, three snow

layer (Sellers et al.

1996)

Sulfate aerosols, no

dust

NASA GMAO/

NSIPP1 (Schubert

et al. 2002)

2.0� 9 2.5� 9 34

vertical levels

Chou and Suarez

(1999)

Relaxed Arakawa

Schubert

MOSAIC (Koster and

Suarez 1996)

None

NASA GSFC FVGCM

(Lin and Rood 1996,

1997)

2.0� 9 2.5� 9 55

vertical levels

Chou and Suarez

(1999), Chou et al.

(2001)

Relaxed Arakawa

Schubert

LSM (Dai 2001) Aerosol from

GOCART model

(Chin et al. 2002)

NCEP CFS AOGCM

(Saha et al. 2006)

T62L64 (atmos *2�, 64

vertical levels), (ocean

1�zonal 9 0.3�merid,

40 vertical levels)

Hou et al. (1996,

2002)

Hong and Pan (1998) OSU (Pan and Mahrt

1987)

Prescribed

climatological

aerosol

NCEP GFS AGCM T62L64 (*2�, 64

vertical levels)

None

MOHC HadAM3

(Pope et al. 2000)

2.5� 9 3.75� 9 19

vertical levels

Edwards and Slingo

(1996)

Flux penetrate

convective scheme.

(Gregory and

Rowntree 1990)

MOSES-1 (Cox et al.

1999)

Climate aerosol

UCLA AGCM

(Mechoso et al.

2000; Xue et al.

2009)

2.5� 9 2.5� 9 17

vertical levels

Katayama (1972),

Harshvardhan

et al. (1987)

Arakawa and Schubert

(1974), Lord et al.

(1982)

SSIB-1 (Xue et al.

1991)

None

UCLA MRF AGCM

(Kanamitsu et al.

2002; Xue et al.

2004)

T62L28 (*2�, 28

vertical levels)

Chou (1992), Chou

and Suarez (1999),

Hou et al. (1996)

SAS (Pan and Wu

1995, Hong and Pan

1996)

SSIB-1 (Xue et al.

1991)

None

References cited in Table 1 can be found at http://www.wamme.geog.ucla.edu/LOCAL/ref_gcm_wamme.pdf
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Community Atmospheric Model/Community Land Model,

Collins et al. 2006) and the MOHC (Met Office Hadley

Centre, Pope et al. 2000) HadAM3 have slightly lower

resolutions. The NCEP CFS (National Center for Envi-

ronmental Prediction Climate Forecast System, Saha et al.

2006) is a coupled ocean/atmosphere model with the NCEP

GFS (Global Forecast System) as its atmospheric compo-

nent. The CAM/CLM3.0 and GSFC FVGCM (Goddard

Space Flight Center Finite-Volume GCM, Lin and Rood

1996, 1997) include comprehensive aerosol packages and

can be run with or without aerosol simulations. Most

models include comprehensive biophysical models for land

surface processes. The UCLA MRF (University of Cali-

fornia, Los Angeles Medium Range Forecast, Kanamitsu

et al. 2002b; Xue et al. 2004), the UCLA GCM (Mechoso

et al. 2000; Xue et al. 2009), and the COLA (Center for

Ocean-Land-Atmosphere Interactions, Kinter III et al.

1997) GCM have similar land surface schemes. More

information on the physical components of participating

models, including land surface models, can be found in

Table 1.

The first WAMME experiment presented in this paper

includes several years in the twenty-first century with

available AMMA data. The model runs presented in this

paper go from April 1, 2, 3, and 4 through October 31 for

years 2003, 2004, 2005, and 2006. The initial conditions

are from the NCEP/DOE (Department of Energy)

Reanalysis II (Kanamitsu et al. 2002a), and the repetition

of each year with four slightly different start dates enhan-

ces the sample size. Reanalysis II includes corrections of

human processing errors and incorporates upgrades to the

forecast model and a diagnostic package that had been

developed since the time the Reanalysis I was finalized.

Except for the CFS coupled ocean/atmosphere model, SST

and sea ice data are from the MOHC’s HadISST1 data set

(Rayner et al. 2003). They are monthly data with 1-degree

resolution, interpolated by each group to their model’s grid

and then processed to preserve monthly means (Taylor

et al. 2000). We have received 12 sets of GCM runs from

10 climate modeling groups (CAM/CLM3.0 and GSFC

FVGCM provide runs with/without aerosol for the experi-

ment). The first WAMME experiment outputs have been

posted on the CEOP database, openly available to the

scientific community (http://data.eol.ucar.edu/master_list/?

project=WAMME). The model intercomparison results in

this paper emphasize the WAM precipitation and surface

temperature and include spatial distribution, temporal

evolution, and variability, as well as major circulation

features.

Several observational and proxy data sets are used for

the model evaluations. Comparison of these data sets

should provide evidence of uncertainty in the observational

data and errors in the best assimilated data sets, which

should assist us in evaluating models’ performance. These

data include two data sets from the Climate Prediction

Center (CPC), NCEP: one is the CPC Merged Analysis of

Precipitation (CMAP, Xie and Arkin, 1997) and the other

is daily data from the CPC Global Telecommunications

System (GTS) gauge-based analysis of global daily pre-

cipitation and surface temperature, which is based on GTS

daily reports from 6,000 to 7,000 stations around the globe

and referred to as CPC GTS in this paper. They cover the

entire global land area on 0.5 (CPC GTS) and 2.5 (CMAP)

degree lat/lon grids. We mainly use the CPC GTS data for

evaluating model performance since this CPC’s new gene-

ration data set contains more data. The methodology of

GTS data interpolation is presented in Xie et al. (1996). We

also use Reanalysis II, European Center for Medium-Range

Weather Forecasts (ECMWF) Reanalysis Interim (ERA-

Interim, Simmons et al. 2006), and Reanalysis I (Kalnay

et al. 1996) for analyses in this study. The ERA-Interim is a

new global reanalysis product based on a recent release of

the ECMWF Integrated Forecasting System; it contains

many improvements both in the forecasting model and in

analysis methodology when compared to the ERA-40.

These three reanalyses data represent three of the best

assimilation data sets thus far with 6-hourly outputs. Out-

performance of models in any aspect relative to reanalyses

reflects recent model development.

Due to scale discrepancies, it is difficult to directly apply

the valuable and most recent contribution of observational

data sets offered by the AMMA field campaign for the

evaluation of WAMME GCMs. Therefore, we use instead

the gridded data set from the AMMA Land Surface Model

Intercomparison Project (ALMIP, Boone et al. 2009a) for

this analysis. ALMIP conducted an ensemble of offline

land surface model simulations that rely on dedicated

satellite-based forcing and land surface parameter products,

and data from the African AMMA observational field

campaigns to address the known limited ability of land

surface models to simulate surface processes over West

Africa (Boone et al. 2009a and De Rosnay et al. 2009).

ALMIP rainfall is from TRMM 3B42 (Huffman et al.

2007), and the solar radiation is from combined numerical

prediction and satellite data. One of the goals of ALMIP is

to produce a multi-land off-line surface model climatology

of high resolution (multi-scale) soil moisture, surface

fluxes, and water and energy budget diagnostics at the

surface using the forcing described above. The ALMIP-

simulated flux and soil moisture have been evaluated using

the AMMA field campaign data. The scale issue has been

addressed when ALMIP results are compared with the

AMMA field measurement. For example, the ALMIP-

simulated sensible heat flux from the multi-model clima-

tology over the AMMA Mali mesoscale domain has proven

quite consistent with observations (Boone et al. 2009b).
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This ALMIP multi-land model climatology is used to

evaluate the simulated surface components of the GCMs

within WAMME. We refer to this data set as ALMIP data

in this paper. The ALMIP data set used in this study con-

sists of the area between 20�W to 30�E and 5�S to 20�N,

from 2003 through 2006 with 0.5� resolution and 3-hourly

output, and currently represent the best estimate of the land

surface processes over West Africa from 2003 to 2007.

Most results presented in this paper are 4-year means

averaged from four different initial conditions unless

otherwise indicated. The observational data and model

results are bi-linearly interpolated to the 0.5� CPC GTS

grid for comparison. We have also compared the WAMME

GCMs results onto a 2� horizontal grid (not shown). The

results are similar and conclusions are consistent.

3 Comparison of WAMME simulated WAM

precipitation, temperature, and circulation

3.1 Seasonal WAM precipitation simulation

The period of June, July, August, and September (JJAS) is

the major WAM season. Figure 1 shows the 2003–2006

JJAS precipitation mean in the WAMME simulations,

various quasi-observed data sets, and the gauge-based

analysis. The CPC GTS observed 1 mm day-1 isohyet

reaches around 18�N in the north and around 5�S in Central

Africa (Fig. 1p). The axis of the maximum precipitation

band starts at 10�N at the West African west coast and

stretches eastward to 5�N at 30�E. There are two heavy

precipitation centers with more than 10 mm day-1: one

along the southwestern coast of West Africa and one near

the Cameroon and Nigerian coasts. Between these two

centers there is a relatively low precipitation break between

0� and 5�W. These features are apparent in all the obser-

vational data (Fig. 1p–r). Reanalysis II (Fig. 1a) and I

(Fig. 1s) also show similar patterns but with an apparent

wet bias. In addition, their rainfall bands are too close to

the coast in West Africa. ECMWF-Interim also presents

the pattern well but the rainfall is mainly limited to the

south of Chad Lake. Precipitation over the eastern Sahel is

relatively high compared to observation (Fig. 1b).

Every WAMME model simulates realistically the zonal

monsoon rainfall band over the Western African continent;

with the majority of models reproducing its slight northwest-

southeast tilt of the axis of the band and simulating both

maximum precipitation centers and the break in between

(Fig. 1c–n). In this analysis, we also produce an ensemble

GCM mean for comparison (Fig. 1o). For those models with

two simulations (with/without aerosol), we take an average

for these two runs first and the average is then used for cal-

culating the ensemble mean. The ensemble mean produces

better coherent spatial distribution and rainfall intensity as

compared with individual models and reanalyses.

To quantitatively assess the models’ 6-month simula-

tions, we use the Taylor diagram (Taylor 2001) to show

statistical comparisons with observed precipitation of 12

model runs’ spatial estimates of the West African pattern

(Fig. 2). The results in the figure are based on averaged

monthly mean data from May to October over the same

4 years at every grid cell over the land points within 5�N to

20�N and 15�W to 20�E. Each model run’s May-to-Octo-

ber mean over the area is removed when calculating root-

mean-square-error (RMSE). Therefore, this diagram does

not directly show the model bias.

The position of each symbol appearing on the plot

quantifies how closely that model’s simulated precipitation

and its variability match CPC GTS observations. The radial

coordinate in the figure gives the magnitude of total stan-

dard deviation, normalized by the observed value (dotted

arcs in the figure). If the model’s standard deviation is the

same as observed, its radial distance from the original point

equals 1. The values of normalized standard deviations are

marked along the X axis. The angular coordinate gives the

correlation with observations. The correlation values are

marked along the periphery of the circle. The distance

between the model point and the observation point, which

is located at the unit distance of the horizontal radius (red

dot in Fig. 2), denotes the RMSE of the model (solid arcs

in the figure), also normalized by the observed standard

deviation. The closer the model’s symbol to the observa-

tion point, the better the simulation is. In this figure, we

choose CPC GTS as ‘‘true’’ data for model comparison.

Precipitation of CMAP and ALMIP data, which is from

TRMM3B42, is quite close to CPC GTS with minor dis-

crepancies. Differences between GTS and other observa-

tional data and proxy data are considered as measurement

errors/uncertainty to help assess models’ results.

CMAP, ALMIP data, ERA-interim, and reanalyses II

and I’s correlations with CPC GTS equal 0.97, 0.94, 0.93,

0.87, and 0.92, respectively. Their normalized RMSEs are

0.26, 0.34, 0.51, 0.69, and 0.60 of the observed standard

deviation (2.43 mm day-1), i.e., 0.63, 0.83, 1.24, 1.68, and

1.46 mm day-1, respectively, and normalized standard

deviations are 1.05, 0.95, 1.30, 1.35, and 1.37, respectively.

The CMAP and ALMIP results suggest that measurements’

RMSE are less than 1 mm day-1 and relative measurement

discrepancies in spatial correlation and normalized stan-

dard deviation are about 5%. Although reanalyses’ spatial

correlations are close to observation (*90%), their dis-

crepancies in standard deviation (*30%) and the RMSE of

Reanalysis I and II (about 1.5 mm day-1) are quite large.

Figure 2 shows large scattering among different models,

indicating substantial discrepancies in model simulations.

The GCM ensemble mean (red star), for which correlation,
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normalized RMSE, and standard deviation are 0.93, 0.42,

and 1.11, respectively, is close to and slightly worse than

CMAP and ALMIP and better than reanalyses or most

GCMs.

Spatial correlations of the WAMME-simulated precipi-

tation with observations range from 0.70 to 0.94. Only four

model runs, FVGCM, CFS, GFS, and UCLA GCM, have

correlations higher than 90%. The normalized RMSEs of

Fig. 1 JJAS 2003–2006 mean precipitation (mm day-1). a NCEP/DOE Reanalysis II, b ECMWF Reanalysis Interim, c–n WAMME

simulations; o WAMME ensemble mean; p CPC GTS data; q ALMIP data; r CMAP data; and s NCEP/NCAR Reanalysis I

Y. Xue et al.: Intercomparison and analyses of the climatology
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WAMME models range from 0.34 to 1.35, i.e., 0.83 to

3.28 mm day-1. Most models’ normalized RMSEs are

larger than ERA-interim: 0.51, i.e., 1.24 mm day-1. The

normalized standard variation of precipitation of WAMME

models vary from 0.61 to 2.18 of observed standard devi-

ation. MRI, GMAO/NSIPP1 (Schubert et al. 2002), and

MRF’s results are close to the observed values. The stan-

dard deviations of CFS and GFS are quite high, associated

with their considerable positive biases (Fig. 1). On the other

hand, CAM/CLM3.0 has relatively lower standard devia-

tion, which may be partially due to its low resolution (T42).

3.2 Seasonal surface air temperature simulations

Figure 3p shows that the JJAS surface air temperature at

2-m height has a zonal pattern with high temperature in the

Sahara Desert and a steep meridional temperature gradient

from the northern boundary of West Africa to the Guinean

Coast. The Central African tropical rainforest has the

lowest temperature in the region. The difference of other

observational data and each model’s surface air tempera-

ture relative to CPC GTS’s surface air temperature is

shown in Fig. 3c–n. ALMIP surface temperature data

(Fig. 3q) and Reanalysis II, ERA-interim, and Reanalysis I

2-m temperature (Fig. 3a, b, s) have lower temperature

along the Guinean Coast and southern Sahel by about

1–3�C compared with CPC GTS temperature data. Since

the ground observations there are based on limited stations,

these differences reflect the uncertainty in measured

surface temperature. Every model produces a zonal pattern

but with quite different meridional gradients. Four GCMs

(CAM/CLM3.0, MRI, GFS, and HadAM3) have a cold

bias (about -2 to -3�C) over 15�W to 20�E and 5�N to

20�N; the most severe biases are over the 10�N to 15�N

zonal band, where the two observational data sets and three

reanalyses have consensus. These biases are consistent

with their positive biases in precipitation. Meanwhile, over

the same area, FVGCM (no aerosol) and MRF have posi-

tive biases (about 1–2�C). FVGCM (with aerosol), GMAO/

NSIPP1, CFS, and UCLA GCM show less bias over 15�W

to 20�E and 5�N to 20�N, where West Africa is located.

Meanwhile, most models show a negative difference from

CPC GTS data along the Guinean coast but are consistent

with ALMIP data and reanalyses over that region. The

GCM ensemble mean again shows better results with only

a slight cold bias (about 0.9�C, Fig. 3o).

Figure 4 shows the Taylor diagram for the May-to-

October 2003–2006 average surface temperature. The

correlation, normalized RMSE, and normalized standard

deviation for ALMIP/ERA-interim/Reanalysis I/Reanalysis

II are 0.95/0.96/0.95/0.91, 0.44/0.47/0.33/0.41, and 1.27/

1.32/1.09/0.95, respectively. Observed standard deviation

is 2.87�C. The degree of scattering among different mod-

els’ results is smaller and the results are closer to obser-

vations compared with Fig. 2. Most models’ correlation

coefficients are higher than 0.9 and normalized RMSEs are

less than 0.5, comparable to reanalyses. Only MRF has a

relatively high RMSE (0.67). It is interesting to note that
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Fig. 2 Taylor diagram displaying statistical comparisons of 12 model runs’ estimates with observation of the West African mean precipitation

pattern for May to October 2003–2006
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most models show a bias toward high standard deviations.

For example, the normalized standard deviations of

GMAO/NSIPP1, FVGCM, and MRF are larger than 1.3.

But they are similar to ALMIP’s. By and large, the models

produce decent simulations of seasonal mean surface air

temperature but also with divergence in variance and gra-

dient. CAM/CLM3.0 (dust) and HadAM3 produce better

performance than Reanalysis II in every respect. The GCM

ensemble mean again shows superior performance, much

better than any individual model or reanalyses.

Fig. 3 JJAS 2003-2006 mean 2-m air temperature bias (�C) for a
NCEP/DOE Reanalysis II, b ECMWF Reanalysis Interim, c–n
WAMME simulations, o WAMME ensemble mean, q ALMIP data,

and s NCEP/NCAR Reanalysis I. Temperature bias color bar is

shown at the bottom of the figure. The JJAS 2003–2006 mean

observed 2-m air temperature (�C) for CPC GTS and corresponding

color bar are shown in panel (p)
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3.3 Circulation features

This section evaluates the GCMs’ simulations of some

aspects of large scale circulation. The mid-tropospheric

AEJ is an important WAM feature and has been considered

to be a significant factor playing a crucial role in the WAM

system. It is located above the region of strong low-level

potential temperature gradients between the Sahara and the

Guinean Coast during the boreal summer (e.g., Burpee

1972; Reed et al. 1977) and is characterized by strong

vertical wind shear and meridional contrasts in thermo-

dynamic properties. The existence/maintenance of the AEJ

has been considered to be related to surface temperature

gradients (i.e., Burpee 1972), gradients of soil moisture and

SST (Cook 1999), and cloud distributions (Druyan 1989).

It has been found that hot, dry surface conditions and a

deep, well-mixed boundary layer in the Sahara heat low

and cool, moist surface conditions associated with deep

moist convection in the intertropical convergence zone are

intimately linked to the existence of the AEJ (Thorncroft

and Blackburn 1999). Studies have also identified its

relationship with interannual variability of the WAM

(Newell and Kidson 1984; Nicholson 1989; Fontaine et al.

1995).

Figure 5 shows the north–south cross section of the

JJAS zonal wind velocity longitudinally averaged between

10�W and 10�E. Reanalysis II, ERA-Interim, and Reana-

lysis I (Fig. 5a, b, p) indicate the AEJ with a maximum

around 12 m s-1 at 600 mb and 10–15�N. The low-level

monsoon Westerlies between the equator and 20�N are

beneath the AEJ. Meanwhile, the tropical easterly jet (TEJ)

is located at 200 mb and 5–10�N. At about the same level,

the subtropical westerly jet can be seen at 30–35�N. GCMs

generally produce these zonal structures but their simula-

tions have deficiencies in producing various components in

zonal wind features. Every model produces the AEJ and

TEJ at around 600 and 200 mb, respectively, as well as

monsoon westerlies underneath the AEJ. The departure of

latitudinal position of the AEJ from observation for most

models is within a 2.5� range. However, most models,

except CFS, GFS, and MRF, fail to produce proper AEJ

intensity. These three models and NCEP reanalyses use

similar atmospheric models. Furthermore, most models

produce the TEJ too strongly. In addition, CAM/CLM3.0

and FVGVM simulate near-surface easterlies too strongly

to the north of low-level monsoon westerlies, the so-called

Harmattan Easterlies. Because of the WAMME models’

systematic biases in TEJ and AEJ intensity simulation, the

multi-model ensemble mean (Fig. 5o) shows that its AEJ is

too weak and its TEJ is too strong, which indicates that as

long as most models have systematic biases, the

improvement of the multi-model ensemble mean will be

limited.

Another important feature of the WAM is low level

moisture transfer. The WAM low-level wind field and

moisture transport are presented in Fig. 6. Northwestward

flow across the Guinean coast curves northeastward then

eastward and brings moisture into West Africa during the

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.7

0.8

0.9

0.95

0.99

1

Correlation

0.4

0.8

1.2

1.6

2

Standard deviation (normalized)

R
M

S
E

NCEP CPC GTS

NCEP Reanalysis II

NCEP Reanalysis I

ERA Interim

COLA GCM

Cornell/NCAR CAM/CLM3.0 (dust)

Cornell/NCAR CAM/CLM3.0 (no dust)

MRI/JMA JAPAN AGCM

NASA GSFC GMAO/NSIPP1

NASA GSFC FVGCM (aerosol)

NASA GSFC FVGCM (no aerosol)

NCEP CFS

NCEP GFS AGCM

MOHC HadAM3

UCLA AGCM

UCLA MRF GCM

Ensemble mean

ALMIP

2003-2006 Taylor Diagram-Sfc Temperature (lon=[-15 20]; lat=[5 20])
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monsoon season (Fig. 6a, b, p), which is a critical WAM

feature. Most models properly produce this feature. In

addition, the low-level convergence position, marked by a

zero meridional wind line at 900 hPa, is fairly congruent in

most models. However, MRI and CFS’s moisture transport

is relatively weak, and FVGCM’s moisture transport is

rather strong. It is interesting to note that the former models

have a positive bias in simulated precipitation and the latter

one does not show a wet bias. Apparently, moisture

transport is only one factor that affects the WAM evolu-

tion. Moisture convergence should be more relevant to

WAM precipitation development. This issue will be

investigated further in the next section. In addition, Druyan

et al. (2009) find that even with a realistic amount of

moisture advection, a model could still produce a sub-

stantial precipitation bias because the frequency of exces-

sive moist convection also affects the amount of

precipitation. However, a detailed analysis of such aspects

is beyond the scope of the current study.

4 Evaluation of model performance using the ALMIP

data and reanalyses

One of the important WAMME goals is to explore the

utility and synergy of AMMA data in providing a pathway

for model physics evaluation and improvement. In this

section, we apply the ALMIP data to analyze the WAMME

GCM results and focus on the possible association between

simulated spatial distributions of precipitation and surface

variables. We consider surface variables obtained from the

ALMIP ensemble mean to be the best estimate so far for

West African ground hydrology. In a Global Land–Atmo-

sphere Coupling Experiment (GLACE) study (Dirmeyer

Fig. 5 Pressure-latitude cross-section of JJAS 2003–2006 average

zonal wind between longitudes 10�E and 10�W for a NCEP/DOE

Reanalysis II, b ECMWF Reanalysis Interim, c–n WAMME

simulations, o WAMME ensemble mean; and p NCEP/NCAR

Reanalysis I. Isotachs for -6, -8, -10, -12, -14, and -16 m s-1

are superimposed to highlight the jets’ locations
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et al. 2006), a similar investigation was conducted over

many basins by examining the local covariability of key

atmospheric and land surface variables. In that study, it was

found that most models do not encompass well the

observed relationships between surface and atmospheric

state variables and fluxes, suggesting that these models do

not represent land–atmosphere coupling correctly. In this

study, we take a similar intercomparison approach with the

focus on the character of model discrepancy and possible

WAM mechanisms. In this section our focus is the asso-

ciation between precipitation simulation and surface vari-

able simulations rather than individual model performance.

Figure 7a–d show a comparison of spatial correlations

of May–October 2003–2006 mean precipitation between

observation and WAMME simulations and spatial corre-

lations of May–October 2003–2006 mean latent heat flux,

sensible heat flux, surface temperature, and precipitation

minus evaporation between the ALMIP data and

WAMME simulations, respectively. ALMIP data is used

as reference for the spatial correlation calculation.

Therefore, the correlation coefficient of ALMIP data is

100%. The standard deviations of the correlations between

individual off-line ALMIP land surface model simulations

with ALMIP data are relatively small. They are about 0.02

for temperature and latent heat flux and 0.12 for sensible

heat flux, much smaller than the WAMME intermodal

spread as shown in Fig. 7. Since precipitation of the

ALMIP data set is slightly different from the GTS data as

shown in Fig. 2, correlations of simulated precipitation

with ALMIP data in Fig. 7 also have slight differences

from those shown in Fig. 2.

Among the four variables in Fig. 7, although latent heat

flux exhibits a general relationship with precipitation (i.e.,

correlations of latent heat flux and precipitation of

WAMME models with the ALMIP data are generally

consistent), the scattering in Fig. 7a is relatively large with

Fig. 6 JJAS 2003-2006 average 900-hPa moisture flux and wind flow

for a NCEP/DOE Reanalysis II, b ECMWF Reanalysis Interim, c–n
WAMME simulations, o WAMME ensemble mean, and p NCEP/

NCAR Reanalysis I. Bold black line indicates where the meridional

component of the wind equals to zero

Y. Xue et al.: Intercomparison and analyses of the climatology

123



a low R-squared (the square of the linear regression’s

correlation coefficient) as listed in the figure.1 The corre-

lation of GCM-simulated spatial distribution of latent heat

flux is homogeneously high, more than 0.8 for most

models. However, several models’ results are not consis-

tent with the general precipitation/evaporation relationship.

For instance, Reanalysis II and GMAO/NSIPP1 have very

high spatial correlation with the ALMIP evaporation, 0.95

and 0.96, respectively, but their correlations with precipi-

tation are relatively low, about 0.75. On the other hand,

MRI’s correlation with evaporation (0.62) is much lower

than its correlation with precipitation (0.77). Evaporation

provides important moisture source for WAM precipita-

tion. The ratio of evaporation over precipitation in the

WAM area in the ALMIP data is about 0.52. However, the

results here indicate the skill of precipitation simulation is

not highly associated with the skill of latent heat

simulation. In contrast to the latent heat flux, Fig. 7b shows

that high spatial correlations in precipitation and sensible

heat flux are closely associated with each other. The skill of

simulated spatial distribution of precipitation from differ-

ent models corresponds well to the skill of simulated spa-

tial distribution of sensible heat flux. The spatial

correlations of sensible heat flux in the WAMME model

simulation (0.1–0.75) are much lower than the ones of

precipitation, which are between 0.7 and 0.9.

Monsoons are macroscale phenomena and are driven by

differential heating of the land and the ocean. Studies have

indicated that they are modulated by the magnitude of the

associated north–south gradient of low level moist static

energy and their interaction with tropical fronts and the

AEJ (Eltahir and Gong 1996; Parker et al. 2005). A study

of the East Asian and African summer precipitation has

also indicated that different longitudinal and latitudinal

sensible heat gradients at the surface influence the low-

level temperature and pressure gradients, wind flow

(through geostrophic balance), moisture transport, and in
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Fig. 7 Comparison between 2003 and 2006 May–October precipita-

tion spatial correlation coefficients and a latent heat flux, b sensible

heat flux, c surface temperature, and d precipitation minus evapora-

tion spatial correlations; with ALMIP data as the reference (i.e.,

ALMIP spatial correlations are equal to 1). e Similar to (a) but

between surface temperature and 600-hPa zonal wind with reanalysis

II as reference; and f same as e but between latent heat flux and 600-

hPa zonal wind. Bold solid lines indicate the linear fit, and Rs indicate

the R-squared of the linear regression. Reanalyses are plotted in red
and ALMIP in black to distinguish from the WAMME models shown

in blue

1 ALMIP data are excluded in the calculation of the squared of the

correlation coefficient.
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turn, the summer monsoon (Xue et al. 2004). The results

here reveal a close association between the surface energy

partition and precipitation, confirming the importance of

the spatial distribution of sensible heat flux at the land

surface in the WAM. The simulated sensible heat distri-

bution is a reflection of parameterizations of surface tur-

bulent fluxes and simulation of surface energy balance, as

well as the specifications of the vegetation characteristics

and coverage, land use, and soil properties over the WAM

area. Figure 8 shows the spatial distribution of JJAS sen-

sible heat flux of the WAMME models. It is clear that the

north–south gradient of sensible heat flux is a prominent

characteristic of its spatial distribution, i.e., weak sensible

heat flux along the Guinean coast; it gradually increases

northward with a clear contrast along 15�N (Fig. 8p). The

model simulations, including the reanalyses, have sub-

stantial differences from ALMIP data. Only the ensemble

mean produces both adequate spatial distribution and

proper magnitude of the sensible heat flux. The models

with a proper north–south gradient have relatively high

correlations with the ALMIP data. The models with low

correlations produce either too strong a gradient (e.g.,

MRF), or too weak a gradient (e.g., MRI and GMAO/

NSIPP1). Since the sensible heat flux is closely related to

the surface temperature, it is not surprising to see a high R-

squared listed in Fig. 7c. However, it is not as high as that

with sensible heat flux (Fig. 7b). Further analysis in Sect.

5.4 will show that temperature gradient between the Sahara

and the Sahel has a great impact on the monsoon simula-

tion and suggests that differences in its simulation con-

tribute to the model simulation discrepancies.

Although the R-squared shown in Fig. 7a is not high,

Fig. 7d shows that the simulated precipitation distribution

is highly correlated to the simulated distribution of pre-

cipitation minus evaporation, which is a good indicator of

vertically integrated moisture flux convergence (IMFC).

Since a differential equation is used to calculate IMFC, this

calculation is sensitive to temporal resolution, sample size,

Fig. 8 JJAS 2003-2006 mean sensible heat flux (W m-2) for a NCEP/DOE Reanalysis II, b ECMWF Reanalysis Interim, c–n WAMME

simulations, o WAMME ensemble mean; and p ALMIP data. The contour lines indicate the standard deviation of ALMIP land models
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etc. and requires high horizontal resolution (Berbery and

Rasmusson 1999), which is challenging for GCMs. The

WAMME does not have direct model output for IMFC.

The result in Fig. 7 indicates that the discrepancy in

simulated spatial distribution of moisture flux convergence

is very closely related to the discrepancy in simulated

spatial distribution of precipitation. Moisture flux as shown

in Fig. 6 is a major WAM moisture source. The relatively

high R-squared in Fig. 7d compared to Fig. 7a further

confirms its important role in WAM precipitation. In pre-

vious sections, it has been pointed out that a realistic

amount of moisture advection alone is not sufficient to

produce accurate precipitation. The results here further

support this argument.

We also check the relationship between surface vari-

ables and ERA-Interim 600-mb zonal wind between 15�W

to 20�E and 5�N and 20�N, where the AEJ is located. It is

not unexpected to see a close relationship between 600-mb

zonal wind and surface temperature (Fig. 7e) since the

thermal wind balance associated with a surface temperature

gradient is well known (e.g., Li et al. 2007). However,

Fig. 7f shows an even higher R-squared between spatial

correlations of 600-mb zonal wind and spatial correlations

of latent heat flux between the ERA-interim and WAMME

simulations. Diabatic heating due to moist convection has

been suggested as helping to maintain the AEJ (e.g.,

Thorncroft and Blackburn, 1999). Based on Reanalysis I,

Cook (1999) analyzed the surface energy budget at 7�N,

15�N, and 28�N and pointed out that the latent heat gra-

dient encourages a positive temperature gradient and helps

establish a strong AEJ. This is confirmed by a GCM

experiment with uniform soil moisture, which produces a

weak AEJ (Cook 1999). The analysis in Sect. 5.4 will

provide further evidence to support the importance of latent

heat flux in establishing the AEJ. Meanwhile, the R-

squared with sensible heat flux is low (R2 = 0.24) since it

acts to reduce the temperature gradient. In addition to

ERA-Interim, a similar relationship is also confirmed by

the analysis using Reanalysis II and 2006 ECMWF-

AMMA, which includes the assimilation of some of the

2006 AMMA measurements. All these show a highest

R-squared between latent heat flux and the AEJ and lower

R-squared between sensible heat flux and the AEJ. The

discussion in this section reveals the importance of land

surface energy and water balances and provides imperative

information for WAMME’s next experiments to advance

the understanding of the role of land model parameteriza-

tion and specification, land data, and land/atmosphere

coupling in the WAM simulations.

In addition to the factors identified above, there are a

number of other factors which affect the WAM simulation

and are associated with discrepancies in model simulation.

For instance, it is interesting to note that for the two GCMs

with/without aerosol runs, which are indicated by letters ‘d’

and ‘h’/’e’ and ‘i’, respectively, the discrepancies are also

apparent. After introducing aerosol in the simulation, the

correlations of both models improve. This seems to be

consistent with Dirmeyer and Zhao (2004) finding that

downward fluxes from the atmosphere affect the commu-

nication between the land surface and the atmosphere. In

another study, Lau et al. (2006) have identified that the

coupling between Sahel rainfall and Indian Ocean SST, as

well as the coupling between Sahel rainfall and the Atlantic

Ocean SST, contribute to the discrepancies in 19 GCM

simulations in the Intergovernmental Panel for Climate

Change Assessment Report 4 (Hegerl et al. 2003). They

conclude that proper simulation of these couplings is

essential for a good WAM precipitation simulation.

The preliminary analysis here demonstrates the utility of

AMMA data in evaluating WAMME models’ performance

in simulating surface water and energy balances and in

identifying the association of WAMME model discrepan-

cies in simulated precipitation and AEJ with surface vari-

ables. It also provides useful information/guidance for the

WAMME’s next stages of experiment design. In the next

section, we conduct further analysis to evaluate the

WAMME models’ ability to simulate the WAM major

climate modes and to further understand the WAM

mechanisms.

5 Analyses of WAM major features and model

performance using the common empirical

orthogonal functions (CEOF)

5.1 Setting of CEOF analysis

The model intercomparison results have not only been used

to identify the discrepancies, consensuses, and models’

common weakness; they have also been used to identify the

climate modes (e.g., in Barnett 1999; Stouffer et al. 2000;

Benestad 2001). Further brief information regarding CEOF

is summarized in the appendix, and a comprehensive

explanation about CEOF for atmospheric model inter-

comparisons can be found in Sengupta and Boyle (1998).

We apply this method to analyze the common variance

of 4-year (2003–2006) averaged 6-month simulations from

12 GCM runs, three observational data sets (CPC GTS,

CMAP, and ALMIP), and three reanalyses. This approach

is similar to Boyle (1998). The CEOF is applied to inves-

tigate major features of temporal evolution and spatial

characteristics of intraseasonal WAM precipitation by

analyzing the observed and model-simulated WAM pre-

cipitation and temperature. The analysis in this section

provides further evidence of the WAM mechanisms

revealed in the previous section. Five-day means are
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applied for the CEOF calculation. This method concate-

nates the model-simulated fields, two observational data,

and three reanalysis data sets to form a ‘‘single’’ dataset

P’(s, t), described as

P0ðs; tÞ ¼

P1 s; t0ð Þ0; t ¼ 1; 2; . . .; 36; t0 ¼ 1; 2; . . .; 36

P2 s; t0ð Þ; t ¼ 37; 38; . . .; 72; t0 ¼ 1; 2; . . .; 36

. . .

P18 s; t0ð Þ; t ¼ 613; . . .; 648; t0 ¼ 1; 2; . . .; 36

8
>>>><

>>>>:

where Pi is the variable for the ith model, observation, or

reanalysis; s is a spatial gridpoint counter for locations; and

t is a dummy time variable that describes the order of

concatenation. Following Barnett (1999), the 6-month

mean for each model, observational data set, or reanalysis

is subtracted from the data sets on a grid point by grid point

basis. Therefore, the array P0 is subjected to a normal EOF

analysis of its covariance matrix. The common EOF pro-

duces the patterns of variability that the GCMs and

observation share in common. Given the errors in the

observations as shown in the Taylor diagram, rainfall

‘‘observations’’ are also an imperfect realization of the real

world. Since we have done a separate comparison of

models and observations in the previous section, by doing

them together, the analysis will offer a somewhat different

perspective, which will bring out the common physical

processes underlying the dominant modes in the grand

ensemble (models plus observation).

5.2 Intraseasonal WAM precipitation variability

The first common EOF for the 16-member ensemble is

shown in Fig. 9a, and principal components (PC) 1 for each

model and observational data (except CMAP) are shown in

Fig. 10. The area covers West Africa as well as the adja-

cent eastern Sahel and the central African continent.

Explained variances of eigenvalues for their first three PCs

are shown in Fig. 9c.

The leading CEOF, which explains 30% of total vari-

ance for the entire data set, is a dipole pattern between the

Sahel and the coastal area/central Africa with the zero line

along about 7–8�N. The temporal evolution of the leading

PC1 of observed precipitation shows that this mode in fact

exhibits the WAM evolution (red lines in Fig. 10p, q). To

confirm this point, the time evolution of the averaged

rainfall at 10�N and 15�N over 10�W to 10�E from simu-

lations and observations, which is based on a five-day

running mean, is also shown in Fig. 10 (blue lines). The

trends of the two lines in the figure are very consistent with

the correlation coefficients for the three observational data

being higher than 98%. To aid in discussion, we draw a

vertical dashed line (12th pentad) in Fig. 10 indicating the

CPC GTS and ALMIP monsoon onset date. Since the

WAMME data set has no low-level daily wind available,

we use precipitation to approximate the monsoon onset

time. In this study, we follow Fontaine and Louvet (2006)

approach. Two rainfall indexes are defined: a northern

index (NI) averaging 5-day mean precipitation north of

7.5�N to 15�N and 10�W to 10�E and a southern index (SI)

for the region extending between 7.5�N and the equator. A

WAM onset index (WAMOI) is defined as the difference

between the NI and SI standardized indexes, after elimi-

nation of time variability of less than 15 days. The onset

date is defined as the first pentad of a 20-day period reg-

istering positive WAMOIs. This estimated time is consis-

tent with the monsoon onset time identified by Sultan and

Janicot (2000) based on observation and reanalysis.

CPC GTS PC 1 (red line in Fig. 10p) and ALMIP pre-

cipitation PC1 (red line in Fig. 10q) indicate that rainfall

starts gradually increasing in the Sahel in May. During late

June, a rapid rainfall increase/decrease occurs in the Sahel/

coastal area coincidentally, indicating the WAM onset

(12th pentad for CPC GTS and ALMIP). The onset date is

consistent with the time when PC1 changes from negative

to positive. The rainfall keeps increasing over the Sahel,

especially in West Africa (Fig. 10a), for more than

2 months after the onset. After reaching a peak in August, a

quick retreat occurs in early September. We also conduct a

normal EOF analysis with the 6-months CMAP data from

1979 to 2004. Its first EOF produces a dipole pattern (not

shown), very similar to the one shown in Fig. 9a. The

second CEOF mode mainly emphasizes areas to the south

of 10�N along the Guinean coast (Fig. 9b). Since CPC

GTS, ALMIP data, and CMAP’s PC2s explain less than

10% of the variance (Fig. 9c) and show only small oscil-

lations in temporal evolution over the entire period (not

shown), we will not discuss them further in this paper. In

fact, this pattern is very similar to the annual mean of

1949–2000 CMAP precipitation (not shown).

We further compare the PC1 s of observational data

with model-produced ones to evaluate the models’ per-

formance. In general, every model produces proper

seasonal evolution in PC1 with correlation against CPC

GTS PC1 higher than 85% for most models except CAM/

CLM3.0 and GFS. Six models (COLA GCM, CAM/

CLM3.0 (dust), GMAO/NSIPP1, FVGCM (no aerosol),

CFS, and MRF) produce an onset time consistent with the

observations. CAM/CLM3.0 (no dust), MRI, and UCLA

GCM produce monsoon onset dates with more than

10 days difference from observation. The second dramatic

rainfall increase in June in the UCLA GCM simulation,

however, is similar to the observed monsoon onset

(Fig. 10m). In addition, the mean precipitation between 10�
and 15�N (blue lines in Fig. 10) indicates that most models,

except Reanalysis II, FVGCM, and MRF (blue lines in

Fig. 10h, i, n), start with rather high precipitation over the
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Sahel at the beginning of May. Compared with the mon-

soon’s gradual development process during the July–

August timeframe, the observed monsoon retreat in early

September is much faster (Fig. 10p, q). Most models ade-

quately simulate this dramatic reduction in precipitation in

early September.

Although WAMME GCMs produce a generally rea-

sonable PC1 and monsoon onset dates, the WAMME

models have difficulty in producing proper variance in the

PCs. The first PC of every observational data set explains

about 30% of its total variance (Fig. 9c). Variance

explained by ERA-Interim is slightly high (37%) and by

Reanalysis II is very close to observation (27%). Several

GCMs (MRI, GMAO/NSIPP1, FVGCM (no aerosol), CFS,

and HadaM3) produce PC1 variance within the range of the

two reanalyses. CAM/CLM3.0’s PC1 explains too little

variance (less than 13%), which probably is related to its

main monsoon rain occurring over the Sahara (Fig. 1d),

rather than over the Sahel. On the other hand, the PC1s of

Reanalysis I, COLA GCM, FVGCM (aerosol), UCLA

GCM, and MRF explain high variance (40–46%). For the

second PCs, observational data explain less than 10% of

variance. However, only ERA-Interim, COLA GCM, MRI,

CFS, GFS, UCLA GCM, and MRF produce proper vari-

ance. The other two reanalyses and other GCMs show high

variance in PC2 (more than 20%). For the third CEOF, the

observational data and reanalyses show very low explained

variability (less than 5%, Fig. 9c). Most models but CAM/

CLM3, FVGCM, and CFS properly produce the variance in

PC3.

By and large, the CEOF analysis produces physically

meaningful first EOF spatial patterns and a monsoon
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precipitation evolution process. WAMME models’ simu-

lations of evolution are generally consistent with observa-

tions. Some models have weaknesses in simulating parts of

the precipitation evolution process, such as onset. The

difficulty for most models is in producing proper precipi-

tation variability in their first three PCs.

5.3 Intraseasonal daily surface temperature variability

The thermal gradient has been considered a major driving

force for West African monsoon evolution (Sultan et al.

2007). CEOF analysis is conducted for surface temperature

to evaluate its intraseasonal evolution and spatial charac-

teristics. Since the ALMIP data set only covers a domain

south of 20�N and Fig. 3 shows that ALMIP and CPC GTS

have very similar temperature over the area close to the

Sahara desert (north of 15�N), we fill in the domain to the

north of 20�N in the ALMIP data set with the corre-

sponding CPC GTS data for CEOF temperature analysis.

We also conducted another CEOF analysis without ALMIP

data, and the results for CEOFs and other models’ PCs are

very similar and consistent. Figure 11 shows the first two

CEOFs as well as variances explained by the first three

CEOFs. Figures 12 and 13 show PCs for each model and

observation. The monsoon onset date estimated from

Fig. 10 is also presented to help identify the relation of

temperature gradient development and monsoon evolution.

The first CEOF emphasizes the surface temperature

anomalies over the Sahara and accounts for 49% of total

variance. We refer to this mode as the Sahara mode in this
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Fig. 10 Precipitation first PC (red line) and area-averaged precipi-

tation between 10�W and 10�E along latitudes 10�N and 15�N

(blue line, mm day-1) for a NCEP/DOE Reanalysis II, b ECMWF

Reanalysis Interim, c–n WAMME simulations, p CPC GTS; and

q ALMIP data. The vertical dashed line in each panel indicates the

approximate observed monsoon onset pentad
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paper. Similar to Fig. 10, the time evolutions of the mean

surface temperature at 20�N and 25�N over 10�W to 10�E,

associated with the Sahara mode, from simulations or

observations are also shown in each panel in Fig. 12 (blue

lines). Their evolutions are all very consistent with their

PC1s. The correlation coefficients are higher than 97%.

Before the monsoon onset, the negative temperature

anomaly in the Sahara is dramatically reduced and even-

tually becomes positive anomalies (Fig. 12p, q). The

monsoon onset is quite consistent with the time about 10–

15 days after the PC1 positive anomaly reaches its maxi-

mum, which remains at about the same level (a plateau)

during the monsoon period (about 90 days). After August,

the positive anomaly reduces dramatically and becomes

negative in early September (Fig. 12p, q). Sultan et al.

(2007) applied 1979–2000 Reanalysis II data, identifying

common EOF leading modes for both temperature and low

level wind in WAM development. The first mode identified

in this study is consistent with their 1st EOF, albeit their

PC1 does not have a plateau (lasting for about 40 days in

CEOF PCs) and has a peak 15 days after monsoon onset,

similar to UCLA GCM (Fig. 12m). We have also con-

ducted a normal EOF analysis with 1979–2006 CPC GTS

data. The results show features similar to Sultan et al.

(2007). The plateau apparently is a special feature for

WAMME-selected years, as shown in blue lines in

Fig. 12p, q.

Reanalyses and most models, except CAM/CLM3.0 and

MRI, properly simulate this evolution process with their

PC1s’ correlation coefficients with observation higher than

90%. The PC1 evolution of GMAO/NSIPP1 and HadAM3

are very similar to observation. The PC1 temporal varia-

tions of CAM/CLM3.0 and MRI are different from other

models, consistent with some PC2 features (to be discussed
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later) and their wet biases over the Sahara. The relationship

between precipitation mode and temperature modes will be

discussed further in Sect. 5.4. Reanalyses and most models’

simulations have a latitudinal band with low sea level

pressure (a thermal low) around 20�N (not shown).

Figures 11a and 12 reveal that most models present a

dramatic increase in temperature near heat low regions

before monsoon onset as in observations, indicating a close

relationship between WAM onset and thermal low deve-

lopment in the Sahara.

CEOF 2 explains 29% of the variance and is dominated

by the zonal temperature anomaly over the Sahel with a

center in West Africa (Fig. 11b). We refer to this mode as

the Sahel mode in this paper. The time evolution of the

mean surface temperature of 10�N to 15�N and 10�W to

10�E from simulations and observations is also shown in

Fig. 13 (blue lines) and is consistent with PC2s, with

correlation coefficients generally larger than 98%. CPC

GTS and ALMIP data’s PC2 are very similar. Observa-

tional data (Fig. 13p, q) show that before the monsoon

onset, the positive anomaly is dramatically reduced from

its maximum and close to about zero, consistent with the

northward movement of the monsoon. After monsoon

onset, the negative anomaly increases and reaches a

maximum in August. After August, the negative anomaly

reduces and temperature increases again (Fig. 13p, q).

Reanalyses and most models correctly produce PC2’s

evolution processes and magnitude, with correlation coef-

ficients being higher than 90%. CFS, GFS, UCLA GCM,

and MRF either keep the flat negative anomalies or simu-

late a general decreasing trend after the negative maximum

in August, similar to Sultan et al’s PC of the second EOF as
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Fig. 12 Two-meter air temperature first PC (red line) and average 2-
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well as the PC of the second EOF based on 1997–2006

GTS data analysis. It seems that these models’ PC2s are

closer to the long term climatology.

A significant difference between models and observa-

tional data is again in the explained variances. While they

are only 29 and 37% for CPC GTS PC1 and ALMIP PC1,

respectively, most models’ PC1s, except CAM3/CLM3.0

(26%), MRI (44%), and HadAM3 (41%), explain much

higher variance, about 50–80%, more close to Reanalysis I

(46%), Reanalysis II (52%), and ERA-Interim (47%)

(Fig. 11c). The CPC GTS observational data have limited

stations in the Sahara area, which probably causes low

variance of CPC GTS data in PC1 compared with most

models. Two observational data exhibit high variance in

the Sahel mode, 50% for CPC GTS and 44% for ALMIP

data. Except CAM/CLM3.0 (dust, 43%), MRI (39%), and

HadAm3 (42%), reanalyses and most models’ PC2s

explain less variance, around 30% (Fig. 11c). The uncer-

tainty in explained variances by the Sahara mode and the

Sahel mode indicate that further diagnostic studies based

on observation and model simulations are necessary

to understand these relationships and to improve model

simulations. Since PC3 only explains 8% of the variance,

we will not discuss it in this paper.

5.4 WAM evolution and changes in temperature

gradient and latent heat evolution

Two temperature modes (i.e., PC1, Sahara mode, and PC2,

Sahel mode) exhibit the evolution of the temperature gra-

dient during the monsoon development process. The pro-

gress of the monsoon precipitation northward (precipitation

PC1) is associated with the weakening of the Sahel mode

(temperature PC2) and the enhancing of the Sahara mode
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(temperature PC1), which in turn enhances the meridional

temperature gradient. The timing of monsoon onset is

about 10–15 days after the peak of the summer temperature

anomaly in the Sahara. The temperature gradient keeps

increasing during the entire monsoon season as the Sahel

mode (temperature PC2) gets weak. The dramatic reduc-

tion in precipitation PC1 occurs in early September when

the trend of change of the heat gradient starts to reverse:

the trends of temperature change in both Sahara mode and

Sahel mode move in opposite directions. Most GCMs

properly simulate these evolutions (Figs. 10, 12, 13).

To further analyze the relationship between monsoon

precipitation evolution and temperature gradients, we cal-

culate the correlation between precipitation PC1 and tem-

perature PC1 and PC2 for each model (Table 2). The

correlation of precipitation PC1 with surface temperature is

positive with temperature PC1 (Sahara mode) and negative

with temperature PC2 (Sahel mode) in CPC GTS and the

ALMIP data, consistent with our previous discussions

about heat anomaly development in the Sahara and Sahel.

Both GTS and ALMIP data have close absolute correlation

values for their surface temperature PC1 and PC2 with

their precipitation PC1, around 0.7–0.8. The correlation of

MRI and CAM3/CLM3.0’s surface temperature PC1

(Sahara mode) with precipitation PC1 is negative. Mean-

while, their PC2s (Sahel mode) with large explained vari-

ances show a high negative correlation with precipitation

PC1. These two characteristics indicate that the location of

their surface temperature maximum is probably too far

north of the center of the Sahara mode, where a positively

correlated relationship between precipitation and tempera-

ture gradient evolution should exist, thus consistent with

their wet bias in the southern Sahara (Fig. 1d–f). On the

other hand, CFS, UCLA GCM, and MRF’s temperature

PC1s’ (Sahara mode) correlation with precipitation is

dominant. The correlation of their Sahel mode, which

explains very low variance (Fig. 11), with precipitation

PC1 is rather low, indicating less effect of Sahel temperature

anomalies on their WAM evolution simulation, inconsis-

tent with observation.

In Sect. 4, we showed that the skill of simulated spatial

distribution of precipitation is highly related to that of

temperature. The analysis here confirms the close temporal

correlation between temperature gradient in West Africa

and WAM precipitation evolution. To further explore this

mechanism and identify the character of discrepancy in

WAMME models’ simulations of precipitation, we calcu-

lated the lag/lead correlations between the precipitation

PC1 and temperature PC1 and between the precipitation

PC1 and temperature PC2. Our analysis shows that the lead

correlations between precipitation PC1 and temperature

PC1 (Sahara mode) from ALMIP, observation, reanalyses,

and almost every model are substantially smaller than the

simultaneous (i.e., zero lag/lead) correlations. After

15 days, no statistically significant correlations exist (not

shown).

However, the lag correlations (R1LG) between preci-

pitation PC1 and temperature PC1 are statistically signifi-

cant (Table 2). With no lead correlation and higher lag

correlation than the simultaneous one, the results here

indicate that the Sahara mode leads precipitation PC1

because if the lead/lag relationship is merely a reflection

due to variables’ autocorrelation, similar lead/lag correla-

tions pattern (i.e. graduating reduction while the lead/lag

time increases) should be expected. The lag correlation

reaches a peak in 15 days, except for HadAM3 and UCLA,

whose lag correlations reach peaks in 5 days. Only two

GCMs, MRI and CAM3/CLM3.0, show anonymous lag

correlations, consistent with their apparent wet biases as

discussed earlier. Meanwhile, the lag correlations (R2LG)

between the precipitation PC1 and temperature PC2 (Sahel

mode) are substantially smaller than the simultaneous

correlations (Table 2). Their lead correlation coefficients

(R2LD) are quite high (Table 2) and persistent, indicating

the temperature anomaly in Sahel response to the WAM

Table 2 Simultaneous and 15-day lag/lead correlation coefficients

Data sources R1a R1LGa R2a R2LGa R2LDa

GTS 0.72 0.79 -0.83 -0.55 -0.88

ALMIP 0.81 0.86b -0.78 -0.49 -0.87

Reanalysis II 0.70 0.80 -0.71 -0.47 -0.78

Reanalysis I 0.55 0.81 -0.83 -0.64 -0.87

ERA-Interim 0.71 0.86 -0.83 -0.58 -0.84

COLA 0.64 0.91 -0.78 -0.71 -0.88

CAM3/CLM3.0_dust -0.62 -0.63 -0.89 -0.92 -0.61

CAM3/CLM3.0_no dust -0.73 -0.76 -0.81 -0.91

MRI -0.88 -0.71 -0.91

GMAO/NSSiP 0.76 0.90 -0.91 -0.74 -0.86

FVGCM-aerosol 0.66 0.81 -0.91 -0.72 -0.87

FVGCM-no aerosol 0.63 0.80 -0.89 -0.70 -0.86

CFS 0.85 0.85 -0.49

GFS 0.64 0.79 -0.74

HadAM3 0.90 0.94c -0.84 -0.61 -0.76

UCLA 0.94 0.96c

MRF 0.82 0.87 -0.40 -0.52

Only list the correlation coefficients with higher than 95% statistical

significance
a R1(R2): simultaneous correlation between precipitation PC1 and

surface temperature PC1 (PC2); R1LG(R2LG): 15-day lag correlation

[precipitation PC1 lagging surface temperature PC1 (PC2)]; R2LD:

15-day lead correlation (precipitation PC1 leading surface tempera-

ture PC2)
b Correlation coefficient is based on 10-day lag
c Correlation coefficients are based on 5-day lag
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rainfall evolution. Such relationship is also consistent with

the negative correlation; i.e., more rainfall leads to lower

surface temperature.

In a similar approach, which analyzed the lag/lead cor-

relation between Sahel precipitation and Sahara geopo-

tential height simulated by the CMIP3 models, Biasutti

et al. (2009) identified that the variability of the Sahara low

is a driver of interannual and decadal variability in Sahel

rainfall and that the intermodal variation in the Sahara

thermal low may cause the discrepancy of CMIP3 models

in simulating Sahelian interannual rainfall. The results in

this study indicate that the development of the Sahara mode

leads the WAM precipitation seasonal evolution and that

the divergence in its simulation in the WAMME models is

relevant to the discrepancy in WAM precipitation simula-

tion, consistent with Biasutti et al’s interannual-decadal

study (2009). Meanwhile, the negative correlation between

precipitation PC1 and Sahel mode and their lag/lead cor-

relation patterns (Table 2) show the response of tempera-

ture in the Sahel to WAM precipitation, but this response

enhances the gradient between the Sahara mode and the

Sahel mode and then also contributes to the WAM pre-

cipitation evolution as discussed earlier. Further investi-

gation of the link between physical processes, such as

planetary boundary layer parameterization, land surface

parameterization, and radiative transfer, and the deficiency

in simulating the relationship between WAM precipitation

evolution and temperature gradient development in the

Sahel and Sahara will be an important task in the next

WAMME experiment.

To further analyze the relationship shown in Fig. 7e–f,

using 4-year monthly mean data, we also conduct similar

calculations of 1-month lag/lead correlations between

zonal wind at 600 hPa over 10�W to 10�E and 5�N to

15�N, where the maximum AEJ is located, and the latent

heat flux and surface temperature over the Sahel (10�W to

10�E and 10�N to 15�N) (Table 3).2 No significant

1-month lead correlations have been found (not shown).

According to the geostrophic dynamics, a positive latitu-

dinal temperature gradient will generate easterly thermal

wind. When the atmospheric temperatures below mid-tro-

posphere are higher to the north (i.e., over the Sahara) and

lower to the south (i.e. over Sahel), the mean latitudinal

temperature gradient is positive over tropical West Africa

and the thermal wind (and hence the jet) is easterly. The

larger negative 1-month lag correlations in the ALMIP,

ERA-Interim, and Reanalysis II results shown in Table 3

confirm such a relationship and that the temperature is a

driving force for the discrepancy in AEJ simulation. Fur-

thermore, the positive simultaneous and lag correlations

between zonal wind at 600 hPa and latent heat flux also

(Table 3) demonstrate that increased latent heat flux gra-

dient between Sahel and Sahara, where the latent heat flux

is near zero, enhanced the AEJ; therefore, latent heat flux is

another driving force in producing AEJ simulation dis-

crepancy. Most models fail to produce larger lag correla-

tions (R2LG in Table 3) than the simultaneous correlation

as indicated in ALMIP and reanalyses, which may be

associated to the poor AEJ simulations by the WAMME

models.

6 Discussion and summary

This paper briefly presents the WAMME project and serves

as an introduction for other WAMME papers in this special

issue. It evaluates models’ performances in simulating

magnitudes, spatial distributions, and variability of WAM

precipitation, surface temperature, and major circulation

features at seasonal and intraseasonal scales. Major dif-

ferences/deficiencies in simulations are identified and their

character with respect to mechanisms of WAM spatial

distribution and evolution are explored using observational

data, especially ALMIP data.

The analyses indicate that models with specified SST

generally have reasonable simulations of the pattern of the

Table 3 Simultaneous and 1-month lag correlation coefficients

between zonal wind at 600 hPa and surface temperature and latent

heat flux at Sahel

Data sources R1a R1LGb R2a R2LGb

ALMIP -0.51 -0.66 0.45 0.76

Reanalysis II -0.44 -0.61 0.67

Reanalysis I -0.82 -0.57 0.71 0.56

ERA-Interim -0.56 -0.68 0.47 0.75

COLA -0.67 0.83

CAM3/CLM3.0_Dust -0.81 -0.80 0.55 0.48

CAM3/CLM3.0_No Dust -0.72 -0.77

MRI -0.83 -0.83 -0.71 -0.51

GMAO/NSSiP -0.79 -0.78 0.73 0.70

FVGCM-aerosol -0.65 -0.43 0.50 0.42

FVGCM-no aerosol -0.57 -0.56 0.45 0.56

CFS

GFS -0.56

HadAM3 0.61

UCLA -0.53

MRF -0.62

Only list the correlation coefficients with higher than 95% statistical

significance
a R1/R2: simultaneous correlation between zonal wind at 600 hPa

and surface temperature/latent heat
b R1LG/R2LG: 1-month lag correlation between zonal wind at

600 hPa and surface temperature/latent heat

2 Daily zonal wind data is not available for WAMME models.
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spatial distribution of WAM seasonal mean precipitation

and surface temperature as well as the averaged zonal wind

in latitude-height cross-section and low level circulation.

However, the discrepancies of simulated spatial correla-

tion, intensity, and variance of precipitation are large

compared with observations. Furthermore, the majority of

models fail to produce proper intensities of the AEJ and

TEJ. Although individual models show weaknesses in

different aspects, WAMME multi-model ensembles pro-

duce good WAM seasonal mean precipitation and surface

temperature spatial distribution, intensity, and variability,

better than reanalyses in many respects. However, when

the majority of the models show a systematic bias, such as

in the simulated intensity of the AEJ and TEJ, and AEJ

evolution (not shown), the ensemble mean fails to yield

better results, which suggests that while applying the

ensemble mean for prediction, caution must be taken

because the multi-model ensemble mean does not neces-

sarily always produce the best result in all aspects com-

pared with the individual models.

ALMIP data are used to analyze the associations

between simulated surface variables and WAM precipita-

tion and the AEJ, to explore model simulation differences,

and to investigate the WAM mechanism. WAMME models

have shown that spatial distributions of surface sensible

heat flux, surface temperature, and precipitation minus

evaporation (i.e., moisture convergence) are closely asso-

ciated with the divergence of simulated spatial distribution

of precipitation; while surface latent heat flux is closely

associated with the AEJ.

We conduct CEOF analyses to identify major common

modes of seasonal WAM precipitation and surface tem-

perature anomaly evolutions for 2003–2006 to evaluate

model simulations in these modes and to investigate the

relationship between WAM precipitation evolution and

development of the surface temperature gradient during the

monsoon season. The PC1 of precipitation and PC1 (Sahara

mode) and PC2 (Sahel mode) of surface temperature char-

acterize the WAM precipitation evolution and northward

movement of temperature gradient, respectively. CEOF

analysis reveals distinct features in these modes during

2003–2006 compared to long-term climatological modes,

despite similarities. The analysis of simultaneous and

lag/lead correlations indicates that the WAM precipitation

northward movement/retreat is closely associated with

an enhanced/weakened Sahara mode and a weakened/

enhanced Sahel mode. Although the WAMME models

generally simulated these modes, there are large discre-

pancies in their explained variance in each mode. Further-

more, although the observed WAM evolution is associated

with developments of both the Sahara mode and the Sahel

mode, some WAMME models’ temperature gradient

development relies solely on variations in a single mode,

either the Sahara mode or Sahel mode, as evident in the

variance explained by each mode. Meanwhile, it has also

found that some models’ deficiencies in rainfall simulation

can be traced to their ability in simulating the Sahara mode.

This paper provides an extensive quantitative assessment

of common state-of-the-art GCMs in WAM simulations in

the WAMME project with Taylor analysis, CEOF analysis,

and other statistical analyses, and introduces the AMMA

data for GCM applications for the WAM modeling study.

Furthermore, taking advantage of the CEOF analysis with

multi-model results and the AMMA data, the contribution

of the Sahara mode and the Sahel model to the WAM

precipitation evolution and to simulation discrepancies, as

well as the contribution of latent heat flux and surface

temperature over the Sahel to the AEJ, are identified. Such

comprehensive GCM intercomparisons and analyses for

WAM simulations, especially applying AMMA data to

explore the WAM mechanisms and the character of model

simulation discrepancies, have not been done before. Based

on the results from this study, the WAMME will conduct

further experiments to investigate the causes of major

common deficiencies identified here and design specific

experiments to evaluate/identify the relative contributions

of external forcings in WAM variability. The present results

should provide a good starting point as benchmarks for

future studies to understand the roles of external forcing and

internal dynamics in WAM variability.
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Appendix: CEOF analysis

CEOF and common principal component analysis, which

share a similar approach with different algorithms, describe

modes with identical structures in the observations and the

GCM results and are associated with time series that
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describe the temporal variations for observations and GCM

data (Sengupta and Boyle 1998; Barnett 1999; Benestad

2001, 2004). CEOF isolates patterns of variability that are

present in all models and makes it possible for the vari-

ability associated with these patterns to be compared

quantitatively between the models and observation. There-

fore, one advantage in using CEOF is that one can directly

compare corresponding principal components. In addition,

Stouffer et al. (2000) indicated that CEOF could avoid some

common problems associated with individual EOF analysis

for model intercomparison. This method has been applied in

a number of multi-model comparison analyses. For exam-

ple, Stouffer et al. (2000) employed CEOF analysis to

compare the variance of each model associated with the

common EOF patterns. The result shows that the models

generally agree on the most prominent patterns of vari-

ability. However, the amplitudes of the dominant modes of

variability differ to some extent between the models and

between the models and observations.

It has been noted that there are a number of ways in

which CEOF analysis can be performed (e.g., using a

correlation matrix, spatial weighting, and temporal

smoothing) that can potentially change the details of the

CEOF results. However, it is also suggested that the major

results (i.e., the two leading modes) should be insensitive to

the details of the CEOF calculation (Barnett et al. 2000).

Therefore, we only present these two modes in this paper.

In some analyses, the calculation includes both model

results and observations (i.e., Boyle 1998); in others, when

the observational data do not cover the entire model

simulation period or there are too many missing points in

the observational data, the PCs for observation are calcu-

lated using a least-squares-fit projection approach (Stouffer

et al. 2000; Barnett 1999). A comprehensive explanation of

CEOF for atmospheric model intercomparisons can be

found in Sengupta and Boyle (1998).
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